Topological invariants for interacting topological insulators. I. Efficient numerical evaluation scheme and implementations

نویسندگان

  • Yuan-Yao He
  • Han-Qing Wu
  • Zi Yang Meng
  • Zhong-Yi Lu
چکیده

The aim of this series of two papers is to discuss topological invariants for interacting topological insulators (TIs). In the first paper (I), we provide a paradigm of efficient numerical evaluation scheme for topological invariants, in which we demystify the procedures and techniques employed in calculating Z2 invariant and spin Chern number via zero-frequency single-particle Green’s function in quantum Monte Carlo (QMC) simulations. Here we introduce an interpolation process to overcome the ubiquitous finite-size effect, so that the calculated spin Chern number shows ideally quantized values. We also show that making use of symmetry properties of the underlying systems can greatly reduce the computational effort. To demonstrate the effectiveness of our numerical evaluation scheme, especially the interpolation process, for calculating topological invariants, we apply it on two independent two-dimensional models of interacting topological insulators. In the subsequent paper (II), we apply the scheme developed here to wider classes of models of interacting topological insulators, for which certain limitation of constructing topological invariant via single-particle Green’s functions will be presented.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Topological Hamiltonian as an exact tool for topological invariants.

We propose the concept of 'topological Hamiltonian' for topological insulators and superconductors in interacting systems. The eigenvalues of the topological Hamiltonian are significantly different from the physical energy spectra, but we show that the topological Hamiltonian contains the information of gapless surface states, therefore it is an exact tool for topological invariants.

متن کامل

Delocalization of boundary states in disordered topological insulators

We use the method of bulk-boundary correspondence of topological invariants to show that disordered topological insulators have at least one delocalized state at their boundary at zero energy. Those insulators which do not have chiral (sublattice) symmetry have in addition the whole band of delocalized states at their boundary, with the zero energy state lying in the middle of the band. This re...

متن کامل

Topological Insulators with Inversion Symmetry

Topological insulators are materials with a bulk excitation gap generated by the spin-orbit interaction that are different from conventional insulators. This distinction is characterized by Z2 topological invariants, which characterize the ground state. In two dimensions, there is a single Z2 invariant that distinguishes the ordinary insulator from the quantum spin-Hall phase. In three dimensio...

متن کامل

Classification of interacting electronic topological insulators in three dimensions.

A fundamental open problem in condensed-matter physics is how the dichotomy between conventional and topological band insulators is modified in the presence of strong electron interactions. We show that there are six interacting electronic topological insulators that have no noninteracting counterpart. Combined with the previously known band insulators, these produce a total of eight topologica...

متن کامل

Topological crystalline insulators.

The recent discovery of topological insulators has revived interest in the band topology of insulators. In this Letter, we extend the topological classification of band structures to include certain crystal point group symmetry. We find a class of three-dimensional "topological crystalline insulators" which have metallic surface states with quadratic band degeneracy on high symmetry crystal sur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016